DEVELOPMENT OF A SET OF MESH-BASED AND AGE-DEPENDENT CHINESE PHANTOMS AND APPLICATION FOR CT DOSE CALCULATIONS

Yifei Pi¹, Tianyu Liu² and X. George Xu¹,²,*
¹School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui Province 230026, PR China
²Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

*Corresponding author: xgxu@ustc.edu.cn

Received 7 October 2017; revised 3 December 2017; editorial decision 4 December 2017; accepted 14 December 2017

Phantoms for organ dose calculations are essential in radiation protection dosimetry. This article describes the development of a set of mesh-based and age-dependent phantoms for Chinese populations using reference data recommended by the Chinese government and by the International Atomic Energy Agency (IAEA). Existing mesh-based RPI adult male (RPI-AM) and RPI adult female (RPI-AF) phantoms were deformed to form new phantoms according to anatomical data for the height and weight of Chinese individuals of 5 years old male, 5 years old female, 10 years old male, 10 years old female, 15 years old male, 15 years old female, adult male and adult female—named USTC-5 M, USTC-5F, USTC-10M, USTC-10F, USTC-15M, USTC-15F, USTC-AM and USTC-AF, respectively. Following procedures to ensure the accuracy, more than 120 organs/tissues in each model were adjusted to match the Chinese reference parameters and the mass errors were within 0.5%. To demonstrate the usefulness, these new set of phantoms were combined with a fully validated model of the GE LightSpeed Pro 16 multi-detector computed tomography (MDCT) scanner and the GPU-based ARCHER Monte Carlo code to compute organ doses from CT examinations. Organ doses for adult models were then compared with the data of RPI-AM and RPI-AF under the same conditions. The absorbed doses and the effective doses of RPI phantoms are found to be lower to compute organ doses from CT examinations. Organ doses for adult models were then compared with the data of RPI-AM and RPI-AF under the same conditions. The absorbed doses and the effective doses of RPI phantoms are found to be lower than these of the USTC adult phantoms whose body sizes are smaller. Comparisons for the doses among different ages and genders were also made. It was found that teenagers receive more radiation doses than adults do. Such Chinese-specific phantoms are clearly better suited in organ dose studies for the Chinese individuals than phantoms designed for western populations. As already demonstrated, data derived from age-specific Chinese phantoms can help CT operators and designers to optimize image quality and doses.

INTRODUCTION

Methods for estimating patient organ doses from computed tomography (CT) are one important topic of radiation protection, owing to the rapid increase of scans performed in the USA, Europe and China in the past decade. Surveys suggest that CT has become a major source of medical radiation exposure¹⁻³, responsible for more than 50% doses of the medical exams in the United States⁴⁻⁶. The core of this research was the estimation of organ dose information from such clinically important procedures. Radiation dosimetry is the basic science determining the amount and distribution of ionizing energy deposited in the interested objects. Accurate radiation dosimetry in the human body is quite challenging as discussed in a review article and a book by Xu et al⁷,⁸. Since organ doses cannot be directly measured in a live person, physical anthropomorphic phantoms have been used as a substitute for the sake of inserting dosimeters for pointwise dose measurement. It is well known that experimental and radiation safety procedures make in-phantom measurement expensive and time-consuming. For this reason, computational phantoms—a mathematical model of the human body—are more frequently used in organ dosimetry. As Xu observed⁹, since the 1960s, three generations of computational phantoms have been reported: (1) stylized phantoms that are based on quadratic equations (1960–2000s); (2) voxel phantoms that are based on tomographic images (1980s–present); and (3) boundary representation (BREP) phantoms that are based on the advanced primitives which are easy to deform the geometrical shapes (2000s–present). The first-generation computational phantoms, known as the MIRD stylized models⁹, were originally developed for estimating doses from internally deposited radioactive materials in workers and patients¹⁰. Although stylized phantoms made it possible to carry out Monte Carlo (MC) computations when computers were much less powerful, the original developers recognized the obvious shortcomings. It is too complex to realistically model the human anatomy with a limited set of surface equations⁷,¹¹. In the early 1980s, powerful computer and tomographic imaging...
technologies such as CT and magnetic resonance imaging (MRI) allowed researchers to visualize the internal structures of the body in 3D and to store the images in versatile digital formats. These led to the second-generation voxel phantoms that were realistic in depicting the anatomy of a specific individual. It is extremely inefficient to adjust the anatomical information in the voxel format, so the BREP phantoms—in the form of either non-uniform rational B-spline (NURBS) or polygonal meshes—become the latest research tool for organ dose calculations\(^7\,8\,12\). For the purposes of radiation protection, the ‘Reference Man’ methodology issued by the International Commission on Radiological Protection (ICRP) requires a computational phantom to match with the 50th percentile values in terms of body height and weight for a specific population group, including a specific gender or even a specific age group\(^13\). The RPI adult male (RPI-AM) and RPI adult female (RPI-AF)\(^14\) phantoms we previously developed were based on the mesh geometry and carefully adjusted to match the parameters\(^13\) defined for the ICRP Reference Man\(^15\). Other studies used similar methods to create hundreds of BREP phantoms as are summarized in a review paper\(^7\). Particularly, children are generally considered to suffer more risks than adults under the same radiation conditions due to their higher radiation sensitivity in some growing organs and the increased likelihood for radiation-induced tumors, such as leukemia, brain, breast, skin and thyroid cancers\(^16\) in their longer rest of life\(^17\,18\,19\). Owing to the attractive features in flexibility of the BREP phantoms, more phantoms with different ages and genders have emerged through manual and semiautomatic adjustments of mesh surfaces based on the existing reference phantoms\(^21\,22\,23\). For phantoms with different ages, Christ \textit{et al.} constructed ‘Virtual Family’ phantoms (an adult male, an adult female and two children) based on high-resolution magnetic resonance images\(^20\). Lee \textit{et al.}\(^27\) used NURBS and polygon mesh to model six new pediatric hybrid phantoms: 1, 5 and 10-year-old males and females and Gayer \textit{et al.}\(^28\) has applied them to CT dosimetry. However, most of the existing BREP computational phantoms are based on the western populations parameters recommended by the ICRP, which differ from the Asian population\(^29\,30\). There are several voxel Chinese phantoms such as CNMAN, VCH, CVP, CAM and CPP01\(^33\,38\). Currently, no BREP phantoms for Chinese minors were reported.

Furthermore, computational phantoms must be coupled with a MC code that simulates radiation transport inside the human body for radiation dosimetry. The MC method is known to be credibly accurate in radiological physics\(^3\). Some public-domain, general-purpose MC codes have been employed including EGS\textit{ mnemonic}\(^39\), FLUKA\(^40\), GEANT\textit{41}\), MCNP\textit{42}\) and PENELOPE\(^43\), compared with the other types of radiation transport calculations. The drawback, however, is the lengthy time it takes to yield acceptable statistical precision\(^44\,45\) through the extremely large number of particles in the simulation. In a revolutionary approach, we have demonstrated a new parallel MC method, ARCHER, which can be used in CPU, GPU or MIC platform to accelerate MC calculations\(^46\,48\).

In the area of commercially available software for CT organ doses reporting, ImPACT\(^49\), CT-Expo\(^50\), SimDoseCT\(^51\) and VirtualDose\(^52\,53\) are the most widely used tools. VirtualDose, used by more than 1000 users worldwide, was based on a family of 25 voxel phantoms and BREP phantoms that contain detailed anatomical information. The advanced ‘software as a service (SaaS)’ mode was chosen to design the interface to achieve the quick and easy accesses and maintainances\(^53\). Therefore, VirtualDose represents the state-of-the-art CT organ dose-reporting tool today.

This paper reports a major project undertaken in China to develop one of the first sets of mesh-based and age-dependent phantoms representing the Chinese population. Besides, the applications of these phantoms for CT dose calculations were described and the age-dependent organ doses were compared with the earlier published data by our group about the VirtualDose software. It is our hope that these phantoms and the derived organ dose information can help to meet the needs in China where nuclear power industry and medical imaging are growing rapidly.

MATERIALS AND METHODS

This section provides details in two parts: phantom development and application for CT dose calculations.

Phantom development

The phantom development includes the following steps (as illustrated in Figure 1):

1. Evaluation of the initial input data including human body dimensions for Chinese adults and minors, reference organ volumes, tissue components and the original RPI-AM/RPI-AF phantoms.
2. Adjustment of human body dimensions though scaling.
3. Quality assurance (QA) to guarantee the accuracy in the newly created phantom.
4. Preparation for dose calculations through voxelization of mesh-based the new phantom and assignment of tissue components.

Evaluation of initial input data

This study takes advantage of the RPI-AM and RPI-AF, previously developed at Rensselaer Polytechnic Institute\(^14\). Each phantom contains up to 140 organs or tissues, and is adjusted to match the ICRP reference values\(^15\). Since these phantoms were designed entirely...
with polygonal mesh surfaces, it is easy to change the size and the shape of organs. The original developers have already demonstrated the flexibility in morphing these original phantoms into overweight and obese phantoms, as well as female phantoms with different breast sizes. Therefore, it is a natural choice to use the original RPI-AM and RPI-AF phantoms in this study to create a set of Chinese phantoms by considering anatomical parameters that are specific to the Chinese population.

Such Chinese-specific data in our study are originated from the related Chinese standards and the International Atomic Energy Agency (IAEA) reports. Considering the ICRP reports regarding human anatomical parameters for the sake of radiation protection, the Chinese government issued reference data for its own population in 2007, which became the national standards later. A portion of the organ mass data from these Chinese standards are re-produced in Tables 1 and 2. However, walled-organ contents and some radiation insensitive tissues, such as muscles and vessel are not defined in the Chinese standards. To complement the data in Chinese standards, data from IAEA published in 1998 were further accepted in this study. The IAEA data, include a set of anatomical, physiological and metabolic data for ‘Reference Asian Man’ covering the following age groups: newborn, 1-year old, 5-year old, 10-year old and adult from 20- to 50-year old in a similar definition as in the ICRP publications. A group of Chinese researchers from Tsinghua University adopted the IAEA organ or tissue data in a Chinese adult male phantom, as supplements of the Chinese standards. Table 3 summarizes the IAEA data adopted in this study. The skeleton is a heterogeneous mixture consisting of three parts, cortical bones, spongiosa bones and medullary cavities. Zankl et al. demonstrated the effectiveness of the simplified method in modeling the skeleton when they constructed ‘Rex’ and ‘Regina’ phantoms. Because the existing Chinese standards and reference Asian data

![Figure 1. Steps in the development of mesh-based and age-dependent Chinese phantoms.](https://example.com/figure1.png)

<table>
<thead>
<tr>
<th>Organ/tissue</th>
<th>5-year M</th>
<th>5-year F</th>
<th>10-year M</th>
<th>10-year F</th>
<th>15-year M</th>
<th>15-year F</th>
<th>Adult M</th>
<th>Adult F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testicles</td>
<td>3.1</td>
<td>—</td>
<td>4.7</td>
<td>—</td>
<td>33</td>
<td>—</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Ovaries</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>1.4</td>
<td>—</td>
<td>9.8</td>
<td>—</td>
<td>11</td>
</tr>
<tr>
<td>RBM</td>
<td>305</td>
<td>305</td>
<td>710</td>
<td>710</td>
<td>900</td>
<td>750</td>
<td>1100</td>
<td>800</td>
</tr>
<tr>
<td>Colon</td>
<td>102</td>
<td>102</td>
<td>170</td>
<td>170</td>
<td>291</td>
<td>225</td>
<td>310</td>
<td>240</td>
</tr>
<tr>
<td>Lungs</td>
<td>360</td>
<td>360</td>
<td>580</td>
<td>580</td>
<td>940</td>
<td>720</td>
<td>1250</td>
<td>960</td>
</tr>
<tr>
<td>Stomach</td>
<td>47</td>
<td>47</td>
<td>75</td>
<td>75</td>
<td>120</td>
<td>95</td>
<td>145</td>
<td>110</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>13</td>
<td>13</td>
<td>21</td>
<td>21</td>
<td>38</td>
<td>30</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Mammary gland</td>
<td>—</td>
<td>—</td>
<td>38</td>
<td>38</td>
<td>—</td>
<td>200</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>Liver</td>
<td>575</td>
<td>575</td>
<td>850</td>
<td>850</td>
<td>1170</td>
<td>1050</td>
<td>1410</td>
<td>1290</td>
</tr>
<tr>
<td>Esophagus</td>
<td>13</td>
<td>13</td>
<td>25</td>
<td>25</td>
<td>30</td>
<td>28</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Thyroids</td>
<td>3.4</td>
<td>3.4</td>
<td>7.9</td>
<td>7.9</td>
<td>12</td>
<td>12</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Skin</td>
<td>775</td>
<td>775</td>
<td>1200</td>
<td>1200</td>
<td>2200</td>
<td>1700</td>
<td>2400</td>
<td>1800</td>
</tr>
</tbody>
</table>

Note: Bilateral organs/tissues.

Table 1. Reference mass values (g) of radiosensitive organs/tissues recommended by the Chinese government.

Table 2. Reference mass values (g) of non-radiosensitive organs/tissues recommended by the Chinese government.

Table 3. Reference mass values (g) of radiosensitive organs/tissues recommended by the Chinese government.
do not contain the certain information, the ICRP proportion data of bones were employed to calculate the mass of red bone marrow (RBM), yellow bone marrow (YBM), trabecular and cortical bones of every piece of the skeleton.

Table 2. Reference mass values (g) of other organs/tissues for Chinese\(^{(55)}\).

<table>
<thead>
<tr>
<th>Organ/tissue</th>
<th>5-year</th>
<th></th>
<th>10-year</th>
<th></th>
<th>15-year</th>
<th></th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Body fat</td>
<td>1900</td>
<td>1900</td>
<td>5000</td>
<td>5000</td>
<td>6500</td>
<td>9000</td>
<td>9000</td>
</tr>
<tr>
<td>LBW(^b)</td>
<td>17 100</td>
<td>17 100</td>
<td>27 000</td>
<td>27 000</td>
<td>48 500</td>
<td>41 000</td>
<td>54 000</td>
</tr>
<tr>
<td>Skeleton</td>
<td>2200</td>
<td>2200</td>
<td>4500</td>
<td>4500</td>
<td>7300</td>
<td>5700</td>
<td>8000</td>
</tr>
<tr>
<td>Brain</td>
<td>1200</td>
<td>1200</td>
<td>1350</td>
<td>1350</td>
<td>1480</td>
<td>1360</td>
<td>1460</td>
</tr>
<tr>
<td>Heart</td>
<td>95</td>
<td>95</td>
<td>150</td>
<td>150</td>
<td>240</td>
<td>200</td>
<td>325</td>
</tr>
<tr>
<td>Kidneys(^a)</td>
<td>115</td>
<td>115</td>
<td>175</td>
<td>175</td>
<td>230</td>
<td>220</td>
<td>290</td>
</tr>
<tr>
<td>Spleen</td>
<td>70</td>
<td>70</td>
<td>100</td>
<td>100</td>
<td>140</td>
<td>120</td>
<td>165</td>
</tr>
<tr>
<td>Sialaden(^a)</td>
<td>26</td>
<td>26</td>
<td>45</td>
<td>45</td>
<td>77</td>
<td>59</td>
<td>82</td>
</tr>
<tr>
<td>Gall bladder</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Small intestine</td>
<td>190</td>
<td>190</td>
<td>325</td>
<td>325</td>
<td>540</td>
<td>420</td>
<td>620</td>
</tr>
<tr>
<td>Pancreas</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>60</td>
<td>90</td>
<td>75</td>
<td>120</td>
</tr>
<tr>
<td>Eyes(^a)</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Eye lens(^a)</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.4</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>Adrenal gland(^a)</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Thymus</td>
<td>33</td>
<td>33</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Pituitary gland</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.53</td>
<td>0.61</td>
<td>0.7</td>
</tr>
<tr>
<td>Body weight</td>
<td>19 000</td>
<td>19 000</td>
<td>32 000</td>
<td>32 000</td>
<td>55 000</td>
<td>50 000</td>
<td>63 000</td>
</tr>
<tr>
<td>Body fat</td>
<td>1900</td>
<td>1900</td>
<td>5000</td>
<td>5000</td>
<td>6500</td>
<td>9000</td>
<td>9000</td>
</tr>
<tr>
<td>LBW(^a)</td>
<td>17 100</td>
<td>17 100</td>
<td>27 000</td>
<td>27 000</td>
<td>48 500</td>
<td>41 000</td>
<td>54 000</td>
</tr>
<tr>
<td>Skeleton</td>
<td>2200</td>
<td>2200</td>
<td>4500</td>
<td>4500</td>
<td>7300</td>
<td>5700</td>
<td>8000</td>
</tr>
</tbody>
</table>

\(^a\)Bilateral organs/tissues.
\(^b\)LBW = lean body mass.

Table 3. Reference mass values (g) of organs/tissues for Asian Reference Man\(^{(30, 31)}\).

<table>
<thead>
<tr>
<th>Organ/tissue</th>
<th>5-year</th>
<th></th>
<th>10-year</th>
<th></th>
<th>15-year</th>
<th></th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Colon contents</td>
<td>120</td>
<td>120</td>
<td>190</td>
<td>190</td>
<td>340</td>
<td>260</td>
<td>360</td>
</tr>
<tr>
<td>Stomach contents</td>
<td>80</td>
<td>80</td>
<td>130</td>
<td>130</td>
<td>230</td>
<td>170</td>
<td>240</td>
</tr>
<tr>
<td>Bladder contents</td>
<td>33</td>
<td>32</td>
<td>54</td>
<td>54</td>
<td>96</td>
<td>78</td>
<td>100</td>
</tr>
<tr>
<td>Heart contents</td>
<td>130</td>
<td>130</td>
<td>210</td>
<td>220</td>
<td>380</td>
<td>290</td>
<td>400</td>
</tr>
<tr>
<td>Gall bladder contents</td>
<td>16</td>
<td>16</td>
<td>27</td>
<td>29</td>
<td>47</td>
<td>36</td>
<td>50</td>
</tr>
<tr>
<td>Small intestine contents</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>330</td>
<td>260</td>
<td>350</td>
</tr>
<tr>
<td>Rectum</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>19</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Prostate</td>
<td>1</td>
<td>—</td>
<td>1.5</td>
<td>11</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>Prostate contents</td>
<td>0.34</td>
<td>—</td>
<td>0.51</td>
<td>—</td>
<td>3.6</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>Tongue</td>
<td>64</td>
<td>50</td>
<td>67</td>
<td>51</td>
<td>67</td>
<td>51</td>
<td>67</td>
</tr>
<tr>
<td>Tonsil</td>
<td>1</td>
<td>0.98</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Bronchus</td>
<td>8.5</td>
<td>8.3</td>
<td>14</td>
<td>15</td>
<td>24</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>Trachea</td>
<td>3.2</td>
<td>2.9</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Ureter</td>
<td>5.1</td>
<td>4.9</td>
<td>8</td>
<td>8.6</td>
<td>13</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Uterus</td>
<td>—</td>
<td>5.9</td>
<td>8.9</td>
<td>13</td>
<td>14</td>
<td>—</td>
<td>14</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Teeth</td>
<td>45</td>
<td>34</td>
<td>45</td>
<td>34</td>
<td>45</td>
<td>34</td>
<td>43</td>
</tr>
</tbody>
</table>

"Adjustment of human body dimensions"

The original RPI-AM and RPI-AF phantoms, which represent adults, were scaled to yield new phantoms with desired heights as illustrated in Figure 2. As shown in this figure, a phantom is divided into four
The ICRP has suggested that these four sections of the human body grow with different rates at different ages\(^{13}\). The growth rate is much slower after age 18 for boys and age 16 for girls\(^{13, 59}\). It is reasonable, therefore, to deform phantoms among adults with a uniform scaling factor suitable for these four sections. For adolescents, growth and development occur more rapidly for arms, legs and trunk. Figure 2 displays these sections of the phantom where different scaling factors are specified. According to the length, width and height of each section, the following scaling factors were calculated:

\[
\begin{align*}
\text{WFactor} &= \frac{\text{TargetWidth}}{\text{OriginalWidth}} \\
\text{HFactor} &= \frac{\text{TargetHeight}}{\text{OriginalHeight}} \\
\text{LFactor} &= \frac{\text{TargetLength}}{\text{OriginalLength}}
\end{align*}
\]

where TargetWidth is the reference width of one model part, OriginalWidth represents the actual width value. TargetHeight, OriginalHeight, TargetLength and OriginalLength have similar significances. The new vertexes simply can be calculated by dot products with calculated factors.

After that, all the phantom sections were assembled to form a whole phantom. In-house MATLAB scripts were developed to automate these steps. Some reparative attempts were finally taken to fix gaps and to smooth the discrete commissures.

Quality assurance

The phantom adjustment steps were repeated to fix geometric errors caused by mismatches between the target phantom and the reference data. A QA measurement was undertaken to make sure the internal organ volumes indeed agreed with the desired reference parameters, and the 3D rendering of the phantom was performed with the help of the Rhinoceros software\(^{60}\) to visually inspect the anatomical details. Organ volume calculations were finished by decomposing it into several elementary tetrahedrons\(^{23}\) and were compared with reference organ parameters as summarized in Tables 1–3. The positions of inner organs and tissues were carefully checked according to human atlas of the Chinese people in this study\(^{32}\). Specific fine-tuning techniques, such as mesh offset, mesh scale and box edit operations were used to change an organ’s volume and shape until organ-level parameters agreed within 0.5% with the reference Chinese data. Figure 3 demonstrates the deformation techniques in Rhinoceros software. Organ overlap was a frequent challenge and had to be carefully examined throughout the process. Subtraction of the Boolean operations was applied to circumvent the situation, when an overlap was identified.

Preparation for dose calculations

The tissue element compositions were defined for the purposes of radiation transport simulations involving MC methods. Organ-specific element compositions were based on reference values of the Chinese standard and the ICRU report 46\(^{56, 61}\). A C++/C# based voxelization tool\(^{14}\) was used to convert the meshed-based age-dependent phantoms into voxel formatted phantoms. A voxel of 0.2 cm \(\times 10^{-3}\) cm\(^3\) is selected to balance the geometrical accuracy and computational time for every new phantom. The organ volumes were found to be in good agreement <1% with the reference parameters after voxelization.

CT dose calculations

Archer MC dose calculation software

For this project, the ARCHER code was used for accurate and fast MC simulation\(^{62}\). The code has multi-GPU support, written in a hybrid of Open Multi-Processing (OpenMP) and CUDA. Each OpenMP thread on the CPU manages one GPU. Particle transport is run in parallel by many CUDA threads on each GPU. A Python script was written to perform thousands of instances of simulations in sequence that used different sets of parameters. For CT dose calculations in this study, only the photon
transport was enabled. Photoelectric effect, Compton scattering and Rayleigh scattering were explicitly simulated. In order to improve the accuracy of scattering simulation, the electron’s binding effect was taken into account. Specifically, the angular distribution of scatter photons was modified by form factors, which tends to reduce the scattering cross-section in the forward direction for Compton scattering, and in the backward direction for Rayleigh scattering. The energy of secondary electrons was assumed to be deposited in the local voxels. The Woodcock tracking method was used to efficiently track particles in a voxel phantom. It is reasonably effective and precise for the photon energy <140 keV applied in most X-ray CT scanners.

In our previous studies, a parameterized and fully validated GE LightSpeed Pro 16 multi-detector CT (MDCT) scanner model was developed using MCNP. We integrated this scanner model into the ARCHER code. The scanner and USTC phantoms are illustrated in Figure 4. ARCHER provides selectable scan protocols that vary in kVps, beam thicknesses, axial or helical scan modes, head or body bowtie filters. The absorbed doses to organs or tissue were normalized to a single particle. They were further mapped to the absolute dose values using our experimentally derived calibration coefficients.

Organ dose calculations

Absorbed doses (in the units of MeV/g/particle), which were normalized to one photon for specified organs, could be gathered from ARCHER code. A series of conversation factors (CF) demonstrated in the previous studies were used to convert results from ARCHER code to the absolute absorbed doses in units of mGy/100 mAs. The conversion function is defined as follows:

$$D_{\text{absolute}} = \left(\sum_{N} D_{\text{simulated}}^{E,NT} \cdot \text{CF}_{E,NT}^{E,NT} \right) \cdot K$$

where $D_{\text{absolute}}^{E,NT}$ is the absorbed dose in mGy; $D_{\text{simulated}}^{E,NT}$ in MeV/g/particle is the absorbed dose computed by our custom-built ARCHER code; $\text{CF}_{E,NT}^{E,NT}$ is the conversion factor measured for GE LightSpeed Pro 16 CT scanner in the unit of (mGy/100 mAs)/(MeV/g/particle); N is the number of CT rotation slices, K is the ratio of total tube current.
(mAs) to 100 mAs. Equation (2) is valid under prescribed beam energy (E, kVp) and beam collimation (NT, mm). A linear interpolation algorithm is adopted to calculate doses located at the beginning and the end due to the non-integral parameter N.

The stochastic radiation efforts on the whole body could be evaluated by the effective dose, E. It is computed as weighted organ equivalent doses involving gender-averaged value following by:

$$E = \sum_{T} W_T \left[\frac{H_{T}^M + H_{T}^F}{2} \right]$$ \hspace{0.5cm} (3)

where W_T is the weighting factor for specified tissue or organ T defined in the ICRP publication 103. H_{T}^M and H_{T}^F are the equivalent doses of T in the male and female phantoms, respectively.

Simulations of clinical CT scan parameters

The head and chest–abdomen–pelvis (CAP) scan protocols were investigated in this study. CT scans were simulated with 120 kVp and 100 mAs, 20 mm collimation width and one pitch. Scan ranges were manually measured from voxel phantoms and summarized from AAPM CT protocols as listed in Table 4. In this study, the head filter was selected in head scan protocol and the body filter was selected in CAP protocol for comparisons.

RESULTS AND DISCUSSION

Phantom results

Eight new mesh-based and age-dependent Chinese phantoms were developed: USTC-AM, USTC-AF, USTC-15M, USTC-15F, USTC-10M, USTC-10F, USTC-5M, USTC-5F. A total of 70 internal organs or tissues, 45 bone components and 4 muscle structures are contained in each single newly developed phantom. Figure 5 displays the 3D rendering of these adult phantoms and Figure 6 represents the geometries for teenager phantoms.

Representative dimensional data were stated in Tables 5–8. It is easy to calculate the trunk section height value from the body height (Table 5), the head height (Table 6) and the perinal height (Table 8);
therefore, the trunk height data were not listed. As exposited in these tables, the dimensions differences between USTC phantoms and reference values were small enough. They are in good accordance with the reference parameters.

CT dose results

Validation of the ARCHER code

The calculations in this study were done by ARCHER which significantly reduced the computation time. Extensive validation of ARCHER was performed using MCNPX and Geant4. The results from ARCHER agree with results from MCNPX very well for X-ray CT imaging doses. The percentage differences from MCNPX are <2%.

In this project, we validated the ARCHER code with MCNPX. The same GE LightSpeed Pro 16
MDCT scanner model and verified adult female obese phantom model\(^5\)\(^,\)\(^22\) were combined in ARCHER and MCNPX. CT scans were simulated with 120 kVp, 20 mm collimation width and 1 pitch from the bottom of phantom to the top. To reduce relative statistical error, up to 1e7 particles were settled. Organ doses were obtained and some organ dose value differences are depicted in Figures 7 and 8. The organ doses calculated by ARCHER are in good agreement with those by MCNPX, generally within 1% when the relative uncertainty is also 1%.

Comparison of serial USTC phantom organ dose data with VirtualDose

Using the procedures described earlier, organ doses were obtained and their value differences are depicted in Figures 9 and 10. As illustrated, most of organ doses and effective doses of USTC-AM and USTC-AF phantoms are higher than RPI-AM and AF phantoms. Because of the anatomical dependency for the relative absorb dose to a particular organ or tissue these differences are expected. Generally, the dimensions of USTC adult phantoms are less than RPI adult phantoms, and the mass value for a single organ is smaller than that in the Caucasian. Because of the above points, relative absorb doses in USTC adult phantoms are higher.

As for bone endosteum, absorbed doses of USTC-AF are 30% less than RPI-AF dose data. One of the reasons is that the voxel size of RPI-AF is 0.27 cm, which is too large to fully cover the thin cortical bones of skull. Some big voxels were discarded when judging whether a voxel is inside or outside the mesh according to the round-off ruler of the ray-stabbing algorithm\(^69\)\(^,\)\(^70\). In addition, there are no orderly trends for thyroid, esophagus and salivary glands.

Table 8. The perinal height for USTC phantoms.

<table>
<thead>
<tr>
<th>Phantom</th>
<th>Practical (cm)</th>
<th>Reference (cm)</th>
<th>Relative error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USTC-AM</td>
<td>75.15</td>
<td>74.17</td>
<td>1.33</td>
</tr>
<tr>
<td>USTC-AF</td>
<td>69.84</td>
<td>69.47</td>
<td>0.54</td>
</tr>
<tr>
<td>USTC-15M</td>
<td>73.95</td>
<td>72.95</td>
<td>1.38</td>
</tr>
<tr>
<td>USTC-15F</td>
<td>70.02</td>
<td>69.1</td>
<td>1.33</td>
</tr>
<tr>
<td>USTC-10M</td>
<td>60.42</td>
<td>60.6</td>
<td>0.30</td>
</tr>
<tr>
<td>USTC-10F</td>
<td>62.03</td>
<td>61.45</td>
<td>0.94</td>
</tr>
<tr>
<td>USTC-5M</td>
<td>45.57</td>
<td>44.9</td>
<td>1.49</td>
</tr>
<tr>
<td>USTC-5F</td>
<td>45.57</td>
<td>45.2</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Figure 7. Dose comparisons of ARCHER with MCNPX for skin tissue.

Figure 8. Dose comparisons of ARCHER with MCNPX for esophagus tissue.

Figure 9. Dose comparisons of USTC adult phantoms with RPI adult phantoms in head scan protocol conditions. Dose values <0.5 mGy are not included. The ratio was calculated by using \(\frac{Dose_{USTC\text{ Adult male or female}} - Dose_{RPI\text{ Adult male or female}}}{Dose_{RPI\text{ Adult male or female}}}.\)
These three type organs are small and narrow, which make them sensitive for positions. Therefore, it is worth noting that small changes of scan ranges can make big differences.

The results in Figures 11 and 12 showed that organ doses and effective doses increased with the decrease of phantom ages. When comparing the differences between different ages, it was found that the 5-year old phantoms have the largest dose data, due to the dimensions of smaller phantoms and organs located closer to the body surfaces. For the above reasons, additional efforts should be taken to optimize CT scan protocols for teenagers, such as the utilizations of Automatic Exposure Control (AEC) technique, minimum of scanning length and reduction of repeated scanning (71, 72).

CONCLUSION

A set of mesh-based and age-dependent adult and adolescent Chinese phantoms, USTC-AM, USTC-AF, USTC-15M, USTC-15F, USTC-10M, USTC-10F, USTC-5M, USTC-5F, have been developed by considering data from both the Chinese standards and the IAEA recommendations for the Asian population. A pair of previously developed mesh-based phantoms, RPI-AM/RPI-AF were chosen as the initial phantom. The original RPI-AM and RPI-AF phantoms, which represent adults, were scaled to create new phantoms with desired heights. At the end of the scaling step, reparative attempts were taken to fill gaps and to smooth discrete commissures. Specific fine-tuning techniques such as mesh offset, mesh scale and box edit operations were employed to change volume and shape of organs until organ-level parameters agreed within 0.5% with the reference Chinese data. All phantoms were voxelized for MC dose calculations. Voxel dimension of 0.2 cm were selected to balance compute time and anatomical reality. We used the GPU-accelerated, highly optimized ARCHER code to perform the accurate and fast simulation. The GE LightSpeed Pro 16 MDCT scanner were also modeled in ARCHER code. The newly developed phantoms were coupled with the scanner model in ARCHER, to compute doses from routine CT exams. The results indicate that organ doses for USTC phantoms, which have smaller body dimensions, are higher than those from RPI adult phantoms due to less radiation attenuation. Similarly, teenagers receive more radiation doses than adults do under the same irradiation conditions. Such dosimetric differences observed between USTC phantoms and RPI phantoms—
which differ mostly in the body dimensions—underscore the importance in considering population-specific anatomical information in radiation protection dosimetry. These phantoms and the derived organ dose information are helpful to meet the demands of nuclear power industry and medical imaging which are developing rapidly in China.

ACKNOWLEDGEMENTS

Some researchers in University of Science and Technology of China (USTC) assisted with the revision and submission of this article: Yaping Qi, Mang Feng, Wanli Huo, Lian Zhang and Prof. Xi Pei. Data analysis were finished with the help of Ms Yaping Qi and Ms Lingli Mao. The Center of Radiological Medical Physics (CRMP) in USTC supplied the high-performance simulation server with 80 CPU cores and Nvidia K40 GPU.

FUNDING

This work was supported by research funding from the National Natural Science Foundation of China (Grant nos. 11375181 and 11375182) and the National Key Research and Development (R&D) Program of China (Grant no. 2017YFC0107504).

REFERENCES

DEVELOPMENT OF A SET OF MESH-BASED AND AGE-DEPENDENT CHINESE PHANTOMS

